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Los Alamos Quantum Dots: Twenty Five Years of 
Innovation…and Fun
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Materials for the Future
n Center for Integrated 

Nanotechnologies (CINT), DOE’s NSRC 
(2000 - …)

n Center for Advanced Solar 
Photophysics (CASP), DOE’s EFRC

(2009 - 2019)



45/17/21Los Alamos National Laboratory | 2021 Materials for the Future

n LANL’s Pillar: Materials for the future n LANL’s Areas of Leadership
Controlled functionality through:

Quantum confinement
Wavefunction engineering
Engineered surfaces & 

interfaces
Controlled inter-dot coupling

Integrated nanomaterials:
Emergent functionality at the 

nanoscale
Next generation materials for 

manipulating photons
Advanced materials for 
optoelectronics

How to predict & control design of nanostructure and/or 
interfaces to achieve emergent functionalities?
How do we understand & exploit competing interactions 

associated with reduced dimensionality & interfaces to yield 
tailored properties? 

n Overarching Science 
Questions:

Materials for the Future
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Born in Colloidal Solution: Artificial Atoms with 
Tunable Energies 

1 – 10 nm

n Fabrication: Moderate-
temperature colloidal 
chemistry

 

Eg (NQD) = Eg (bulk)+

+
2π 2

2mehR
2

quantum 
confinement term

(> 200 meV)

R = 10—50 Å,  ΔR/R = 4—7%

n Size-tunable electronic energies
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Tiny Particles…with Magic Powers

n Lasing

n Sensing

n Solar energyn Lighting & Displays

n Electronics
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LDRD DR Project: Quantum Photonics with 
Semiconductor Nanocrystals

Chemistry: 
C-PCS

Materials Physics & Applications:
Nat High-Magnetic Field Lab 
Center for Integrated Nanotech

Nuclear Eng & Nonproliferation:
NEN-1

Theory: 
T-1

e

h

Quantum Key 
Distribution (QKD)

Random number generation
Quantum metrology

Linear computing Quantum Transducer
Entangled photon pairs

(011010….)

APD 1

AP
D 

2

Beamsplitter

Qiang, et al. Nat. Phot. 2018

Classical light: shot 
noise ∝ 1/m1/2

Single photon 
source: Heisenberg 
limit, noise ∝ 1/m

Cleland Group, UCSB

n ‘Single-photon emitter’ (SPE): Emits 
exactly one photon at a designated time
and all photons are quantum-mechanically 
identical or ‘indistinguishable’ 

n Overarching Objective: To explore the utility of colloidal 
quantum dots as highly-versatile, solution-processible 
materials for implementing wavelength-selectable single-
photon emitters (SPEs) complemented by on-chip light-
amplification circuits, laser sources, and logic-gate devices.
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Project Milestones & Timeline

“Quantum light 101”

“Quantum light 301”

“Quantum light 201”
Expanding/enhancing QL101 
capabilities: electrical pumping, 
coupling to cavities…

Y3

Y1

Y2

Pr
oj

ec
t  

Ti
m

el
in

e

Achieving high excitonic 
coherence, photon 
indistinguishability, maintained 
at elevated temperature

Achieving high single-
photon purity, near-infrared 
(NIR) wavelength, high 
spectral stability

e

h

Quantum Key 
Distribution (QKD)

Random number generation
Quantum metrology

Linear computing Quantum Transducer
Entangled photon pairs

(011010….)

APD 1

AP
D 

2

Beamsplitter

Qiang, et al. Nat. Phot. 2018

Classical light: shot 
noise ∝ 1/m1/2

Single photon 
source: Heisenberg 
limit, noise ∝ 1/m

Cleland Group, UCSB
n Prospective applications: 
High single-photon purity

Quantum Key 
Distribution (QKD)

Random number 
generation

Quantum metrology
Classical light: 
shot noise ∝1/m1/2

Single photon 
source: Heisenberg 
limit, noise ∝ 1/m

Beamsplitter

APD 1

APD 2

correlator

0101101…

Single-dot LED

Classical channel

Quantum channel

K=?

K=01011 K=01011

Linear computing Quantum transductionEntangled photon pairs

Qiang, et al. Nat. Phot. 2018

Cleland Group, UCSB

n Prospective applications: 
High excitonic coherence
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Photon Statistics & Single-Photon Purity
n Photon statistics: Chaotic (classical), coherent (laser) & anti-bunched (quantum) light

Ideal single-photon emitter: g(2)(0) = 0
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Hanbury, Twiss & Brown experiment

n Antibunching mechanisms in colloidal QDs: Quantized Auger recombination 

V. Klimov et al., 
Science 287, 1011 
(2000)

Fspp = 1 - g(2)(0)/g(2)(T) = 1 - QXX/QX = 1 - 4τXX/τX = 0.99  
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Pros & Cons of “Giant” CdSe/CdS QDs

September 2018
X0

Spectrally resolved PL intensity trajectory

40 42 44 46 48 50 52 54 56 58 60 0

30

60

90

 

0

10

20

30

0 400 800

 

0 6 12 18 24 30

n “Giant”  thick-shell CdSe/CdS QDs: Nearly complete suppression of 
intensity fluctuations

C. Galand, et al. 
Nature 479, 203  
(2011)

n … Still significant spectral fluctuations 

Time 

h+

e-
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Fixing the Problem of Standard “Giant” QDs

September 2018
X0

En
er

gy
Time

n Asymmetrically strained, 
continuously graded 
CdSe/ZnCdSe cg-QDs

n Sub-kT spectral 
fluctuations

In
je

ct
 (C

d+
Se

)
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CdSe
CdxZn1-xSe

ZnSe0.5S0.5

CdSe

ZnS
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(Cd+Se) inj. (ml)
1.25 3.5 7.5 9.5

+ Zn + Zn + Zn + Zn + Zn

Se+S injected (ml)
3.00 0

+ Zn

Degas 
Cd prec.

+ Se

13.8 nm

+ S 
prec.

11.1 nm

18.0 nm
14.6 nm

19.1 nm
14.9 nm

injection time (min) injection time (min)

O. Kozlov… V.I. 
Klimov, Science 365, 
672 (2019)

J. Lim, Y-H. Park, V.I. Klimov, 
Nature Mater. 18, 249 (2019)
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CdSe/HgS/CdS QDs: Near-IR Upgrade for CdSe/CdS QDs

n “Nonblinking” NIR CdSe/HgS/CdS QDs with atomically defined HgS interlayer

n Thermodynamically controlled L-b-L growth 

n Atomic-level control of the 
HgS interlayer thickness

V. Sayevich, … V.I. Klimov, 
Nature Nanotech. March 25 (2021)
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CdSe/HgS/CdS QDs: Perfect NIR Emitters

September 2018
X0

n Highly efficient, spectrally tunable NIR emitters (QY > 60%)

n Highly stable single-photon emitters 

Perfect single-
photon purityHgS

CdSe

CdS

Fspp > 97% 

n Excellent electroluminescent  materials 
(NIR-LEDs) 

Nearly blinking-
free emission
fON > 95% 



145/17/21Los Alamos National Laboratory | 2021 Materials for the Future

Photon Amplification
n High-sensitivity detection using single-photon QD 
amplifiers (sub-threshold laser) 

n cg-QDs are excellent optical gain materials 
(suppressed Auger decay, large gain) 

Sub-single-X 
lasing

Optical gain 
with 

electrical 
pumping

J. Lim, Y.S. Park, V.I. Klimov, 
Nature Mater. 17, 42 (2018)

O. Kozlov, …V.I. Klimov,
Science 365, 672 (2019)

DFB-cavity-enhanced NC-SPE Spectrally matched
DFB-NC amplifier

Si APD

n Complete 1S and 1P population inversion 
using pulsed, current focusing QD-LEDs

H. Jung, Y.S. Park, V.I. Klimov, 
Nature Phot. in press (2021)
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Ongoing & Future Research
Primary Challenge: Achieve photon indistinguishability via control of extrinsic and 

intrinsic mechanisms for dephasing

r

Rh
e

Enhanced exciton-
photon coupling

Engineered exciton-
phonon interactions

hn

ZPL

cavity 
mode

hnLA1

LA1
LA2

Controlled phonon 
damping

Suppressed coupling to 
fluctuating environment

o Manipulation of NC electronic 
wavefunctions, surfaces, and matrices 
to eliminate spectral instabilities due to 
fluctuating environment

o Manipulation of NC electronic states, 
phonon spectra and matrices to 
suppress dephasing due to electron-
phonon scattering 

o Exploiting  resonant coupling to optical 
cavities to enhance and sharpen the 
coherent exciton line and suppress 
incoherent phonon replicas. 

n Path forward

With 9 NH2CH3 With 9 PH2CH3

High-resolution 
spectroscopy (MPA-MAG) 

Synthetic chemistry
(C-PCS)

Nanofabrication
(MPA-CINT)

Quantum 
chemistry (T-1)

Single-photon measurements 
(NEN-1) 
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Colloidal quantum dots
• Can serve as SPEs at elevated T: large inter-level 

spacing (>>kBT), strongly confined acoustic phonons
• Readily tunable emission via size-controlled band-gap 

(UV – visible – IR)
• Chemically processable particles: easy to integrate with 

electronic and photonic circuits 
• In principle, can be prepared as monodispersed 

structures with identical emission energies  

Epitaxial quantum dots
• Small inter-level spacing: Need cryogenic-cooling 

(liquid helium)
• Limited range of accessible wavelengths (~800 – 1100 

nm; defined by InGaAs band-gap)
• Difficulty for on-chip integration with Si circuits (lattice 

mismatch)
• Dot-to-dot variability in emission energy (size 

polydispersity) 

• Free-standing particles: uniquely 
suited for applications in imaging 
and sensing (by integrating with, 
e.g., scan probes)

• Easily scalable structures prepared 
using non-clean room techniques 
(e.g., inkjet printing)

• Very inexpensive

Single-photon purity = 99.1%
Indistinguishability = 97.5%

• InAs/GaAs QDs (T = 4.5 K)

Dusanowski, et al., Phys. Rev. 
Lett. 122, 173602 (2019)

10 - 20 nm 2 - 10 nm

Colloidal Quantum Dots as Single-Photon 
Emitters


